Some Propertiesofthe Latticeof Convex Edge Setsofa Connected Directed Graph

AshaSaraswathi B. AndLavanya S.
Department Of Mathematics, P.A.CollegeOf Engineering
Mangalore, D.K -574153
E-Mail Id: ashasaraswathib@gmail.com, lav abh@yahoo.co.in

Abstract

Let G be a connected directed graph and $E(G)$ be the directed edge set of G. A subset C of $E(G)$ is said to be convex if for any $e_{i}, e_{j} \in C$, there is a directed path containing e_{i}, e_{j} and the edge set of every $e_{i}-e_{j}$ geodesic is contained in C. Let Con(G) be the set of all convex edge sets of G together with empty set partial ordered by set inclusion relation. Then Con(G) forms a lattice if and only if G has an Euler trial. In this paper cardinality of the lattice Con(G) is discussed. Also some of the properties of the lattice Con(G) are studied.

Indexterm: Lattices,Chains, Irreducibility, Connected digraphs, Convex edge sets, Paths, Cycles
MSC: 06B99, 05C20, 05C38

1. Introduction

Motivated by the studies on the lattice of convex sets of a connected graph [8], the set of convex edge sets of connected digraphs together with empty set is considered in [1] and it is found that this set forms a lattice with respect to the partial order set inclusion if and only if digraph contains an Euler trail. In this paper we studied properties of these lattices when the digraph G is directed path and directed cycle. Also irreducibility criteria and conditions under which con(G) becomes lower semimodularis discussed. It is proved that if $|E(G)| \geq 3$, Con(G) satisfies lower covering condition if and only if G is a directed cycle C_{3}.
For terminologies and notations used in this paper we refer to [3] and [4]

2. Preliminaries

Let G be a finite connected digraph. $\mathrm{E}(\mathrm{G})$ be the edge set of G. A set $C \subseteq E(G)$ is said to be convex in G if for every two edges $e_{i}, e_{j} \in C$, there is a directed path containing e_{i}, e_{j} and the edge set of every $\mathrm{e}_{\mathrm{i}}-\mathrm{e}_{j}$ geodesic (i.e shortest directed path containing e_{i} and e_{j}) is contained in C. In a digraph G, a walk in which no edge is repeated is a (directed) trail. A closed walk in which no edge is repeated is a (directed) circuit. A trail containing all the edges of G is Euler trail and a circuit containing all the edges of G is Euler circuit.An element ' a ' of a lattice L is join irreducible if $a=b \vee c$ implies that $a=b$ or $a=c$. ' a ' is meet irreducible if $a=b \wedge c$ implies that $a=b$ or $a=c$. An element which is both meet and join irreducible is called doubly irreducible. A lattice L is said to satisfy the lower covering conditionif for $a, b \in L a \wedge b<b$ implies
$a \prec a \vee b$. A lattice L is lower semimodular(LSM) if $a \vee$ b covers both a and b implies that both a and b cover $a \wedge b$.

For a finite connected digraph G, let the set of all convex edge sets in G together with empty set be denoted by Con(G). Define a binary relation \leq on $C o n(G)$ by, for $A, B \in$ Con(G), A $\leq B$ if and only if $A \subseteq B$. Then clearly \leq is a partial order on $\operatorname{Con}(G)$. Moreover $<\operatorname{Con}(G), \subseteq>$ forms a lattice where for $A, B \in \operatorname{Con}(G), A \wedge B=A \cap B$ and $A \vee B=<A \cup B>$ is the smallest convex edge set containing $A \cup B$.

For example, the lattice given in Fig 2.2 represents the lattice $<\mathrm{Con}(\mathrm{G}), \subseteq>$ of the connected digraph G given in Fig 2.1.

Hereafter we consider digraph G containing an Euler trail and use $\operatorname{Con}(\mathrm{G})$ to represent the lattice $<\operatorname{Con}(\mathrm{G}), \subseteq>$

3. On the Lattice Con(G)

Remark 3.1:Con(G) is a chain if and only if G is a directed graph with single edge.

Remark 3.2: If G is a directed graph with two edges, then $\operatorname{Con}(G)$ will be as shown in Fig 3.1 which is a Boolean algebra.

Fig 3.1

Theorem 3.3:If G is a directed cycle with n edges, then $|\operatorname{Con}(G)|=$ $\left(\left\lceil\frac{n}{2}\right\rceil \times n\right)+2$

$$
\text { (Where } \left.\left\lceil\frac{n}{2}\right\rceil=\text { smallest integer } \geq \frac{n}{2}\right)
$$

Proof: Let G be the directed cycle. There are n convex sets with single element, n convex sets with twoelements, and so on, finally n convex sets with $\left\lceil\frac{n}{2}\right\rceil$ elements. Hence there are $\left\lceil\frac{n}{2}\right\rceil \times n$ such convex sets. Therefore $|\operatorname{Con}(\mathrm{G})|=\left(\left\lceil\frac{n}{2}\right\rceil \times n\right)+2$, including \emptyset and E(G).

Theorem 3.4: If G is a directed path with n edges, then $|\operatorname{Con}(G)|$ $=\frac{n(n+1)}{2}+1$

Proof: There are n convex sets with single edge, $n-1$ convex sets with two edges, $n-2$ convex sets with
threeedges and so on, finally one convex set with n edges. Including empty set,

$$
\begin{aligned}
& \quad|\operatorname{Con}(\mathrm{G})|=n+(n-1)+(n-2)+\cdots+1+ \\
& 1=\frac{n(n+1)}{2}+1
\end{aligned}
$$

Theorem 3.5: An element $A \in \operatorname{Con}(G)$ is doubly irreducible if and only if $A=\left\{e_{i}\right\}$ where $e_{i}=\{u, v\}$ is a pendant edge with indegree of u is 0 or 1 and outdegree of v is 1 or 0 respectively $\operatorname{OR~(u,v)~}$ and (v, u) is a directed cycle with indegree of $u=1$ and outdegree of $v=1$.
Proof: Let $A \in C o n(G)$ be doubly irreducible.If A contains more than one element Say $A=\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$, then
$A=\mathrm{V}_{i=1}^{n}\left\{e_{i}\right\}$ and therefore $A=\left\{e_{i}\right\}$ for some i, since A is join irreducible.

If $e_{i}=\{u, v\}$ is not a pendant edge, then indegree of u is one or more and outdegreeof v is one or more, then there will be a directed path $e_{j} e_{i} e_{k}$. Then $\left\{e_{i}\right\}=\left\{e_{j}, e_{i}\right\} \wedge\left\{e_{i}, e_{k}\right\}$, contradiction to $\left\{e_{i}\right\}$ is meet irreducible. Let $e_{i}=\{u, v\}$ be a pendant edge with indegree of $u=2$ or more, then there will be edges e_{j} and e_{k} such that $e_{j}=\left\{u_{1}, u\right\}, e_{k}=\left\{u_{2}, u\right\}$ and $\left\{e_{i}\right\}=\left\{e_{j}, e_{i}\right\} \wedge\left\{e_{k}, e_{i}\right\}$, contradiction to $\left\{e_{i}\right\}$ is meet irreducible. Similarly if $e_{i}=\{u, v\}$ is a pendant edge with outdegree of $\mathrm{v}=2$ or more, then we get a contradiction to $\left\{e_{i}\right\}$ is meet irreducible. Thus if indegree of $\mathrm{u}=2$ or more OR outdegree of $\mathrm{v}=2$ or more, then $\left\{e_{i}\right\}$ becomes meet reducible.
Conversely $A=\left\{e_{i}\right\}$ is join irreducible. If A is meet reducible say $A=B \wedge C=B \cap C$ for some $B, C \in \operatorname{Con}(G)$ such that $A \neq B, A \neq C$. Then $\left\{e_{i}\right\} \in B \cap C$. Consider $\left\{e_{j}\right\} \in B,\left\{e_{k}\right\} \in$ C where $e_{j} \neq e_{i}, e_{k} \neq e_{i}$. Let $e_{i} f_{1} f_{2} \ldots e_{j}$ be the shortest path connecting e_{i}, e_{j} in B. Also let $e_{i} g_{1} g_{2} \ldots e_{k}$ be the shortest path connecting e_{i}, e_{k} in C.If $f_{1}=g_{1}$, then $f_{1} \in B \cap C$ contrdiction to $B \cap C=\left\{e_{i}\right\}$.Also if $f_{1} \neq g_{1}$, then outdegree of $v>1$ contradiction to the fact that outdegree of v is atmost 1 .

Theorem 3.6:Let G be a directed graph with $|E(G)| \geq 3 . \operatorname{Con}(G)$ satisfies lower covering condition if and only if
G is a directed cycle $_{3}$.
Proof: If G is C_{3}, then $\operatorname{Con}(\mathrm{G})$ is distributive[1] and hence Con(G) satisfies lower covering condition.
Conversely, letCon(G) satisfies lower covering condition. If G is not C_{3}, then G contains a trail(which is not a circuit) say $e_{i} e_{j} e_{k}$. Clearly $\emptyset=\left\{e_{i}\right\} \wedge\left\{e_{k}\right\}<\left\{e_{i}\right\}$.But $\left\{e_{k}\right\}<\left\{e_{j}, e_{k}\right\}<\left\{e_{i}\right\} \vee$ $\left\{e_{k}\right\}$. Which implies $\left\{e_{k}\right\} \nless\left\{e_{i}\right\} \vee\left\{e_{k}\right\}$ contradiction to Con(G) satisfies lower covering condition. Hence G must be C_{3}.

Theorem 3.7:Con (G) is lower semimodular(LSM) in the following cases.

1) G is a directed cycle C_{3}
2) G is of the form given in Fig 2.1
3) G is a directed path or directed path containing two element cycles at its end vertices.
4) G is a directed path containing three element cycles at its end vertices.
Proof: If G is a directed cycle C_{3}, then $\operatorname{Con}(\mathrm{G})$ is modular[1]. Every modular lattice is LSM.
If G is of the form given in Fig 2.1, then Con(G) will be as shown in Fig 2.2. Clearly it is LSM.
Let G be as given in case 3 . Let $e_{1} e_{2} \ldots e_{n}$ be the Euler Trail.All possible convex edge sets are as follows.
Emptyset,
$\left\{e_{1}\right\},\left\{e_{2}\right\} \ldots\left\{e_{n}\right\},\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\} \ldots\left\{e_{n-1}, e_{n}\right\},\left\{e_{1}, e_{2}, e_{3}\right\},\left\{e_{2}, e_{3}, e_{4}\right\}$. .. $\left\{e_{n-2}, e_{n-1}, e_{n}\right\}$ Continuing like this $\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$ is the maximum element. If $A \vee B$ covers both A and B, then $A, B, A \vee B$ are of the form $\left\{e_{i}, e_{i+1}, \ldots e_{k}\right\},\left\{e_{i+1}, e_{i+2} \ldots e_{k+1}\right\}$ and $\left\{e_{i}, e_{i+1}, \ldots e_{k+1}\right\}$ respectively. Clearly $A \wedge B=$
$\left\{e_{i+1}, e_{i+2} \ldots e_{k}\right\}$ and it is covered by both A and B. Thus Con(G) is LSM.
Similarly, if G is a directed path containing 3 element cycles at its end vertices, then Con(G) will be LSM.

Theorem 3.8: If G contains a cycle of length ≥ 4, then $\operatorname{Con}(G)$ is not LSM.
Proof: Let G contains a directed cycle C_{n}. Say $e_{1} e_{2} \ldots e_{n}$ with n ≥ 4.

Case 1: When n is even

Taking $A=\left\{e_{1}, e_{2}, \ldots e_{\left[\frac{n}{2}\right]}\right\}$ and $B=\left\{e_{\left[\left.\frac{n}{2} \right\rvert\,+1\right.}, e_{\left[\frac{n}{2}\right]+2}, \ldots, e_{n}\right\}$, we get $A \vee B=\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$ and $A \wedge B=\emptyset$. Clearly $A \vee B$ covers both A and B. But $A \wedge B$ is not covered by A and B. Because \emptyset is always covered by singleton sets. Here both A and B contain two or more elements (since $n \geq 4$).
Case 2: When n is odd
Taking $A=\left\{e_{1}, e_{2}, \ldots e_{\left\lceil\frac{n}{2}\right]}\right\}$ and $B=\left\{e_{\left\lceil\frac{n}{2}\right.}, e_{\left[\frac{n}{2}\right]+1}, \ldots, e_{n}\right\}$, we get $A \vee B=\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$ and $A \wedge B=\left\{e_{\left.\left\lvert\, \frac{n}{2}\right.\right]}\right\}$. Clearly $A \vee B$ covers both A and B. But $A \wedge B$ is not covered by A and B. Because singleton sets are always covered by two element sets. Here both A and B contain three or more elements (since $\mathrm{n} \geq 5$).

Remark 3.9:If G is any of the forms given in Theorem 3.7, then $\operatorname{Con}(G)$ is LSM and hence they satisfy Jordan Dedekind chain condition. Infact if G is a directed cycle C_{n}, then it can be observed that $\operatorname{Con}(G)$ satisfies Jordan Dedekind chain condition. As there are n convex sets with single element, n convex sets with two
elementsand so on, finally n convex sets with $\left\lceil\frac{n}{2}\right]$ elements. Empty set is covered by single element set. Single element sets are covered by two element sets. Two element sets are covered by three element sets continuing like this, $\left\lceil\frac{n}{2}\right\rceil$ element sets are covered by $E(G)$. Therefore all maximal chains connectingany two elements of Con(G) are of the same length.

References:

[1] Asha Saraswathi B. and Lavanya S.,On the Lattice of Convex Edge sets of a Connected directed graph.,International Journal of Pure and Applied Mathematical Sciences.Volume 8, Number 2(2015),pp.155161
[2] Birkhoff. G. Lattice theory, Third edition (New York, 1967)
[3] Gratzer, G: General lattice theory, BirkhauserVerlag, academic press, 1978
[4] Harary F: Graph theory, Addision-wesley 1969
[5] D. Kelly and I. Rival, Planar lattices, CanadJ. Math, 27 No. 3, (1975), 636-665
[6] Koh. K. M. On the sublattices of a lattice, Nanta Math. 6(1)(1973), 6879.
[7] Lavanya. S and S. Parameswara Bhatta, A new approach to the lattice of convex Sublattices of a lattice, Algebra universalis, 35(1996), 63-71
[8] Lavanya S. and Subramanya Bhat S., On the lattice of convex sets of a connected graph, Global journal of pure and applied Mathematics, Vol 7, 2(2011), 157-162
[9] Lavanya S., On the lattice of path sets of a connected graph, Indian Journal of Mathematics research, Vol. 1, No. 2 (2013), 219-222.
[10]Pfaltz. J. L., Convexity in directed graphs, J. Combinatorial theory 10(1971), 143-162.

